Variety of Life Studied to Benefit Humans on Earth and in Space

ISS – Expedition 55 Mission patch.

April 11, 2018

International Space Station (ISS). Image Credit: NASA

The Expedition 55 crew explored a wide variety of life science today studying how different biological systems are affected by long-term exposure to microgravity. The multi-faceted space residents observed human genetic and tissue samples, rodents and fruit flies aboard the orbital laboratory today.

Flight Engineer Ricky Arnold started his morning gearing up the student-designed Genes in Space-5 experiment. He processed hardware and genetic samples to help scientists understand the relationship between DNA alterations and weakened immune systems possibly caused by living in space.

Arnold later joined fellow NASA astronaut Drew Feustel for ultrasound eye exams with remote assistance from doctors on the ground. Feustel wrapped up his workday checking on fruit flies housed in the Multi-Use Variable-G Platform that enables research into smaller and microscopic organisms.

Image above: Daybreak begins to interrupt this aurora as the International Space Station flies an orbital day pass. Image Credit: NASA.

Norishige Kanai, from the Japan Aerospace Exploration Agency, tended to mice recently launched to space aboard the SpaceX Dragon cargo craft. The rodents are part of the Mouse Stress Defense experiment that tests strategies to counteract microgravity stresses and cell signaling that lead to bone and muscle loss.

Doctors are learning how medicine works in space and what it does inside astronaut’s bodies. NASA Flight Engineer Scott Tingle looked at a particular type of medicine today and how it interacts with human tissue cultures. Results could improve therapies in space and lead to better, cheaper drugs on Earth.

Related links:

Genes in Space-5: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7517

Multi-Use Variable-G Platform: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=1777

How medicine works in space: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7517

Expedition 55: https://www.nasa.gov/mission_pages/station/expeditions/expedition55/index.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA/Mark Garcia.

Greetings, Orbiter.chArchive link

SPHERE Reveals Fascinating Zoo of Discs Around Young Stars

ESO – European Southern Observatory logo.

11 April 2018

SPHERE images a zoo of dusty discs around young stars

New images from the SPHERE instrument on ESO’s Very Large Telescope are revealing the dusty discs surrounding nearby young stars in greater detail than previously achieved. They show a bizarre variety of shapes, sizes and structures, including the likely effects of planets still in the process of forming.

The SPHERE instrument on ESO’s Very Large Telescope (VLT) in Chile allows astronomers to suppress the brilliant light of nearby stars in order to obtain a better view of the regions surrounding them. This collection of new SPHERE images is just a sample of the wide variety of dusty discs being found around young stars.

 SPHERE images the edge-on disc around the star GSC 07396-00759

These discs are wildly different in size and shape — some contain bright rings, some dark rings, and some even resemble hamburgers. They also differ dramatically in appearance depending on their orientation in the sky — from circular face-on discs to narrow discs seen almost edge-on.

SPHERE’s primary task is to discover and study giant exoplanets orbiting nearby stars using direct imaging. But the instrument is also one of the best tools in existence to obtain images of the discs around young stars — regions where planets may be forming. Studying such discs is critical to investigating the link between disc properties and the formation and presence of planets.

SPHERE image of the dusty disc around IM Lupi

Many of the young stars shown here come from a new study of T Tauri stars, a class of stars that are very young (less than 10 million years old) and vary in brightness. The discs around these stars contain gas, dust, and planetesimals — the building blocks of planets and the progenitors of planetary systems.

These images also show what our own Solar System may have looked like in the early stages of its formation, more than four billion years ago.

Most of the images presented were obtained as part of the DARTTS-S (Discs ARound T Tauri Stars with SPHERE) survey. The distances of the targets ranged from 230 to 550 light-years away from Earth. For comparison, the Milky Way is roughly 100 000 light-years across, so these stars are, relatively speaking, very close to Earth. But even at this distance, it is very challenging to obtain good images of the faint reflected light from discs, since they are outshone by the dazzling light of their parent stars.

ESOcast 156 Light: Weird and Wonderful Dusty Discs

Another new SPHERE observation is the discovery of an edge-on disc around the star GSC 07396-00759, found by the SHINE (SpHere INfrared survey for Exoplanets) survey. This red star is a member of a multiple star system also included in the DARTTS-S sample but, oddly, this new disc appears to be more evolved than the gas-rich disc around the T Tauri star in the same system, although they are the same age. This puzzling difference in the evolutionary timescales of discs around two stars of the same age is another reason why astronomers are keen to find out more about discs and their characteristics.

Astronomers have used SPHERE to obtain many other impressive images, as well as for other studies including the interaction of a planet with a disc, the orbital motions within a system, and the time evolution of a disc.

The new results from SPHERE, along with data from other telescopes such as ALMA, are revolutionising astronomers’ understanding of the environments around young stars and the complex mechanisms of planetary formation.

More information:

The images of T Tauri star discs were presented in a paper entitled “Disks Around T Tauri Stars With SPHERE (DARTTS-S) I: SPHERE / IRDIS Polarimetric Imaging of 8 Prominent T Tauri Disks”, by H. Avenhaus et al., to appear in in the Astrophysical Journal. The discovery of the edge-on disc is reported in a paper entitled “A new disk discovered with VLT/SPHERE around the M star GSC 07396-00759”, by E. Sissa et al., to appear in the journal Astronomy & Astrophysics.

The first team is composed of Henning Avenhaus (Max Planck Institute for Astronomy, Heidelberg, Germany; ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland; Universidad de Chile, Santiago, Chile), Sascha P. Quanz (ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland; National Center of Competence in Research “PlanetS”), Antonio Garufi (Universidad Autonónoma de Madrid, Madrid, Spain), Sebastian Perez (Universidad de Chile, Santiago, Chile; Millennium Nucleus Protoplanetary Disks Santiago, Chile), Simon Casassus (Universidad de Chile, Santiago, Chile; Millennium Nucleus Protoplanetary Disks Santiago, Chile), Christophe Pinte (Monash University, Clayton, Australia; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France), Gesa H.-M. Bertrang (Universidad de Chile, Santiago, Chile), Claudio Caceres (Universidad Andrés Bello, Santiago, Chile), Myriam Benisty (Unidad Mixta Internacional Franco-Chilena de Astronomía, CNRS/INSU; Universidad de Chile, Santiago, Chile; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) and Carsten Dominik (Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands).

The second team is composed of: E. Sissa (INAF-Osservatorio Astronomico di Padova, Padova, Italy), J. Olofsson (Max Planck Institute for Astronomy, Heidelberg, Germany; Universidad de Valparaíso, Valparaíso, Chile), A. Vigan (Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, Marseille, France), J.C. Augereau (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France) , V. D’Orazi (INAF-Osservatorio Astronomico di Padova, Padova, Italy), S. Desidera (INAF-Osservatorio Astronomico di Padova, Padova, Italy), R. Gratton (INAF-Osservatorio Astronomico di Padova, Padova, Italy), M. Langlois (Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille Marseille, France; CRAL, CNRS, Université de Lyon, Ecole Normale Suprieure de Lyon, France), E. Rigliaco (INAF-Osservatorio Astronomico di Padova, Padova, Italy), A. Boccaletti (LESIA, Observatoire de Paris-Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, Meudon, France), Q. Kral (LESIA, Observatoire de Paris-Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, Meudon, France; Institute of Astronomy, University of Cambridge, Cambridge, UK), C. Lazzoni (INAF-Osservatorio Astronomico di Padova, Padova, Italy; Universitá di Padova, Padova, Italy), D. Mesa (INAF-Osservatorio Astronomico di Padova, Padova, Italy; University of Atacama, Copiapo, Chile), S. Messina (INAF-Osservatorio Astrofisico di Catania, Catania, Italy), E. Sezestre (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), P. Thébault (LESIA, Observatoire de Paris-Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, Meudon, France), A. Zurlo (Universidad Diego Portales, Santiago, Chile; Unidad Mixta Internacional Franco-Chilena de Astronomia, CNRS/INSU; Universidad de Chile, Santiago, Chile; INAF-Osservatorio Astronomico di Padova, Padova, Italy), T. Bhowmik (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), M. Bonnefoy (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), G. Chauvin (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France; Universidad Diego Portales, Santiago, Chile), M. Feldt (Max Planck Institute for Astronomy, Heidelberg, Germany), J. Hagelberg (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), A.-M. Lagrange (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), M. Janson (Stockholm University, Stockholm, Sweden; Max Planck Institute for Astronomy, Heidelberg, Germany), A.-L. Maire (Max Planck Institute for Astronomy, Heidelberg, Germany), F. Ménard (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), J. Schlieder (NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; Max Planck Institute for Astronomy, Heidelberg, Germany), T. Schmidt (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), J. Szulági (Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland; Institute for Computational Science, University of Zurich, Zurich, Switzerland), E. Stadler (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), D. Maurel (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), A. Deboulbé (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), P. Feautrier (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), J. Ramos (Max Planck Institute for Astronomy, Heidelberg, Germany) and R. Rigal (Anton Pannekoek Institute for Astronomy, Amsterdam, The Netherlands).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 15 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a strategic partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.

Links:

Research paper (Avenhaus et al.): http://www.eso.org/public/archives/releases/sciencepapers/eso1811/eso1811a.pdf

Research paper (Sissa et al.): http://www.eso.org/public/archives/releases/sciencepapers/eso1811/eso1811b.pdf

SPHERE consortium web page: https://sphere.osug.fr/?lang=en

Photos of the VLT: https://www.eso.org/public/images/archive/search/?adv=&subject_name=Very%20Large%20Telescope

Photos of SPHERE: http://www.eso.org/public/images/archive/search/?adv=&subject_name=SPHERE

SPHERE: https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/sphere/

ESO’s Very Large Telescope (VLT): https://www.eso.org/public/teles-instr/paranal-observatory/vlt/

ALMA: http://eso.org/alma

Images, Text, Credits: ESO/Richard Hook/Max Planck Institute for Astronomy/Henning Avenhaus/INAF – Astronomical Observatory of Padova/Elena Sissa/ESO/H. Avenhaus et al./E. Sissa et al./DARTT-S and SHINE collaborations/Video: ESO, UHD Team, M. Kornmesser, H. Avenhaus et al., E. Sissa et al., DARTT-S, SHINE collaborations, H. Avenhaus et al./E. Sissa et al./DARTT-S and SHINE collaborations/Music: Jon Kennedy/Written by: Stephen Molyneux, Calum Turner and Richard Hook.

Best regards, Orbiter.chArchive link

Crew Researches Biology and Physics, Practices for Emergency

ISS – Expedition 55 Mission patch.

April 10, 2018

The fully-staffed Expedition 55 crew worked throughout the International Space Station today exploring how microgravity affects a variety of phenomena including biology and physics. The six long-term space residents also practiced a simulated emergency today to maintain their safety skills and awareness.

International Space Station (ISS). Animation Credit: NASA

Flight Engineer Drew Feustel started Tuesday collecting a urine sample and stowing it inside the Human Research Facility’s (HRF) science freezer for later analysis. Shortly afterward, Japanese astronaut Norishige Kanai inserted a dosimeter and biological samples in the HRF’s freezer to research the effects of cosmic radiation on mammalian reproduction.

Commander Anton Shkaplerov swapped manifold bottles inside the Combustion Integrated Rack, a device that enables the safe observation of flames and soot on the orbital laboratory. Shkaplerov’s work today is in support of the Advanced Combustion Microgravity Experiment (ACME). ACME is a set of five independent studies researching gaseous flames in space that may enable more fuel efficient and less polluting technologies on Earth.

Image above: This oblique view taken above southeastern Europe looks west over Italy and into the Mediterranean Sea toward France and Spain. Image Credit: NASA.

NASA astronaut Scott Tingle unpacked new medicine for the crew from the SpaceX Dragon resupply ship today. He also packed up and stowed expired or unused medicine back inside Dragon for return and disposal back on Earth.

The entire crew got together in the middle of the day and trained for the unlikely event of an emergency aboard the orbital lab today. The four astronauts and two cosmonauts practiced communication coordination and familiarized themselves with the location of response areas and safety gear.

Sunrise crashes an aurora party over the southern hemisphere. Image Credit: Astro. Ricky Arnold

Meanwhile, robotics flight controllers are remotely swapping Pump Flow Subassemblies on the outside of the station. They are removing a spare launched on Dragon and replacing it with a failed unit on the Port 6 truss. This is the first of a series of maneuvers that will culminate with another swap of components during the next spacewalk in mid-May.

Related links:

Mammalian reproduction: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=870

Advanced Combustion Microgravity Experiment (ACME): https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1651

SpaceX Dragon: https://www.nasa.gov/spacex

Expedition 55: https://www.nasa.gov/mission_pages/station/expeditions/expedition55/index.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Animation (mentioned), Images (mentioned), Text, Credits: NASA/Mark Garcia.

Best regards, Orbiter.chArchive link