Нужно? Бери. добродел

ТАМxissufotoday.space  как выглядит такое в биополевой сфере

В конце эксперимента оба молодых мужчины стояли чистые как хрусталь.

С мужчин , стянули массу проблем, бед и болезней. Но не все люди стянули, лишь некоторые, 4 молодых мужчин. Очевидно те, кто брал с обманом.

Получается, что если человека с Добром идущего к людям обманывают лжецы, то они забирают на себя беды и несчатья от Доброго.



а этот эксперименто “мерзнущий” наоборот, напялил на его поле событий жизни много бед и болезней с тех, кто ему помог. С одного мужчины снял жестокое избиение. Если хотите, чтобы Вас “почистили” ведитесь на добровольцев, даже рубль отдадите по-доверчивости, беда снимается и переносится на лживого, на обманщика.


Не всё так просто 

Siberian ancestry and Y-haplogroup N1c spread across Northern Europe rather late in prehistory (Lamnidis et al. 2018 preprint)

A claim often made in popular culture is that the Saami people of Fennoscandia and Northern Russia are the last indigenous Europeans. I saw some guy blurt this out on a random cooking show the other day. But it’s not so. In fact, it’s been obvious for a while now, thanks to analyses of modern-day DNA, that the Saami, and indeed almost all other Uralic-speaking groups in Europe, have a somewhat more complex population history than the majority of non-Uralic-speaking Europeans.
Now, ancient DNA is helping to cement these findings. The quotes and figure below are from a new preprint at bioRxiv by Lamnidis et al. [LINK] focusing on the spread of Siberian ancestry across Northeastern Europe from the late stone age onwards. It’s a phenomenon that had the biggest impact on the Uralic-speaking populations of Fennoscandia, and is, in all likelihood, related in a profound, albeit complex, way to the ethnogenesis and expansion of the proto-Uralic people. Emphasis is mine:

The six ancient individuals from Bolshoy show substantially higher proportions of the Siberian component, which comprises about half of their ancestry (49.4-65.3 %), whereas the older Mesolithic individuals from Motala do not share this Siberian ancestry. The Siberian ancestry seen in EHG probably corresponds to a previously reported affinity towards Ancient North Eurasians (ANE)​ [2,24]​ , which also comprises part of the ancestry of Nganasans. Interestingly, results from uniparentally-inherited markers (mtDNA and Y chromosome) as well as certain phenotypic SNPs also show Siberian signals in Bolshoy: mtDNA haplogroups Z1, C4 and D4, common in modern Siberia​ 18,25,26​ , in individuals BOO002, BOO004 and BOO006, respectively (confirming previous findings​ [18​] ), as well as Y-chromosomal haplotype N1c1a1a (N-L392) in individuals BOO002 and BOO004. Haplogroup N1c, to which this haplotype belongs, is the major Y chromosomal lineage in modern North-East Europe and European Russia, especially in Uralic speakers, for example comprising as much as 54% of Eastern Finnish male lineages today​ [27​]. Notably, this is the earliest known occurrence of Y-haplogroup N1c in Fennoscandia.

We formally tested for admixture in north-eastern Europe by calculating ​ f3(​Test;Siberian source, European source) using Uralic-speaking populations – Estonians, Saami, Finnish, Mordovians and Hungarians – and Russians as ​ Test populations. Significantly negative ​ f ​ 3 values correspond to the ​ Test population being admixed between populations related to the two source populations​ [34]​. Additionally, the magnitude of the statistic is directly related to the ancestry composition of the tested source populations and how closely those ancestries are related to the actual source populations. We used multiple European and Siberian sources, to capture differences in ancestral composition among proxy populations. As proxies for the Siberian source we used Bolshoy, Mansi and Nganasan, and for the European source modern Icelandic, Norwegian, Lithuanian and French. Our results show that all of the test populations are indeed admixed, with the most negative values arising when Nganasan are used as the Siberian source (Supplementary Table 3).

Consistent with f3​-statistics above, all the ancient individuals and modern Finns, Saami, Mordovians and Russians show excess allele sharing with Nganasan when used as Test populations. Of all Uralic speakers in Europe, Hungarians are the only population that shows no evidence of excess allele sharing with Nganasan, consistent with their distinct population history as evidenced​ by​ historical​ sources​ (see​ ref​ 35 and​ references​ therein).

While the Siberian genetic component described here was previously described in modern-day populations from the region​ [1,3,9,10​], we gain further insights into its temporal depth. Our data suggest that this fourth genetic component found in modern-day north-eastern Europeans arrived in the area around 4,000 years ago at the latest, as illustrated by ALDER dating using the ancient genome-wide data from Bolshoy Oleni Ostrov. The upper bound for the introduction of this component is harder to estimate. The component is absent in the Karelian hunter-gatherers (EHG)​ [3] dated to 8,300-7,200 yBP as well as Mesolithic and Neolithic populations from the Baltics from 8,300 yBP and 7,100-5,000 yBP respectively [8]​. While this suggests an upper bound of 5,000 yBP for the arrival of Siberian ancestry, we cannot exclude the possibility of its presence even earlier, yet restricted to more northern regions, as suggested by its absence in populations in the Baltic during the Bronze Age.

The large Siberian component in the Bolshoy individuals from the Kola Peninsula provides the earliest direct genetic evidence for an eastern migration into this region. Such contact is well documented in archaeology, with the introduction of asbestos-mixed Lovozero ceramics during the second millenium BC [47], and the spread of even-based arrowheads in Lapland from 1,900 BCE​ [48,49]​. Additionally, the nearest counterparts of Vardøy ceramics, appearing in the area around 1,600-1,300 BCE, can be found on the Taymyr peninsula, much further to the east​ [48,49​]. Finally, the Imiyakhtakhskaya culture from Yakutia spread to the Kola Peninsula during the same period​ [18,50​]. Contacts between Siberia and Europe are also recognised in linguistics. The fact that the Siberian genetic component is consistently shared among Uralic-speaking populations, with the exceptions of Hungarians and the non-Uralic speaking Russians, would make it tempting to equate this component with the spread of Uralic languages in the area. However, such a model may be overly simplistic. First, the presence of the Siberian component on the Kola Peninsula at ca. 4000 yBP predates most linguistic estimates of the spread of Uralic languages to the area​ [51]​. Second, as shown in our analyses, the admixture patterns found in historic and modern Uralic speakers are complex and in fact inconsistent with a single admixture event. Therefore, even if the Siberian genetic component partly spread alongside Uralic languages, it likely presented only an addition to populations carrying this component from earlier.

This generally looks like a very solid preprint, so I don’t expect any major changes between now and formal publication. I have to be honest though, the qpAdm analysis looks like crap. Also, the authors are using the Russian sample set from the Human Origins dataset, which comes from the Kargopol district in Northern Russia. This was actually an Uralic-speaking region until not long ago. No wonder then, that they’re inferring that Russians are very similar to Uralic-speaking populations.
But I know from my own analyses that there’s quite a bit of genetic substructure within European Russia. For instance, Russians from southwest of Moscow are much less Uralic-like than the Kargopol Russians, and indeed very difficult to distinguish from other East Slavs, and even West Slavs. Hence, it might be useful to sample and run a couple more regional ethnic Russian groups for comparison. This might help to strengthen the argument that Siberian ancestry is somehow intimately intertwined with the expansion of Uralic languages in Europe.
Lamnidis et al., Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe, bioRxiv, Posted March 22, 2018, doi: https://doi.org/10.1101/285437