BOOK REVIEW: Uncovering the Culture of Ancient Greece by Alix…

BOOK REVIEW: Uncovering the Culture of Ancient Greece by Alix Wood 

UNCOVERING the Culture of Ancient Greece by Alix Wood is a part of the Archaeology and Ancient Cultures series. It is designed for younger children aiming to pique their interest in and educate them about ancient cultures. The book is laid out with a 2-page spread that details a city, people, or topic in ancient Greek history including Knossos, Mycenae, the Valley of the Temples, the Acropolis, etc. It provides a short description of the topic with pictures of artifacts, ruins, art, and people

The book is laid out in 2-page spreads that detail a city, people, or topic in ancient Greek history. Among the people it introduces the reader to are: the villages of Sesklo and Dimini, the Minoans via the city at Knossos, Mycenae, and the Lefkandi. It discusses various monuments in ancient Greek history including: the Home of the Olympics, the Valley of the Temples, the Oracle at Delphi, and the Royal Tombs. On each page is a small map labeling where the information takes place within Greece. Each section describes how it was found and the people that found it. Because it is aimed at children, there are pictures of the places and monuments that are described. The color and vibrancy of the illustrations are effective tools in recreating the setting and people of ancient Greece. Within the descriptions are words in bold that are included in an extremely helpful glossary at the back of the book.

Read More 

A Tour of our Moon

Want to go to the Moon? 

Let our Lunar Reconnaissance Orbiter take you there!


Our lunar orbiter, also known as LRO, has been collecting data on lunar topography, temperature, resources, solar radiation, and geology since it launched nine years ago. Our latest collection of this data is now in 4K resolution. This updated “Tour of the Moon” takes you on a virtual tour of our nearest neighbor in space, with new science updates from the vastly expanded data trove.

Orientale Basin


First stop, Orientale Basin located on the rim of the western nearside. It’s about the size of Texas and is the best-preserved impact structure on the Moon. Topography data from LRO combined with gravity measurements from our twin GRAIL spacecraft reveal the structure below the surface and help us understand the geologic consequences of large impacts.

South-Pole and Shackleton Crater


Unlike Earth, the Moon’s axis is barely tilted relative to the Sun. This means that there are craters at the poles where the sunlight never reaches, called permanently shadowed regions. As a result, the Moon’s South Pole has some of the coldest measured places in the solar system. How cold? -410 degrees F.

Because these craters are so cold and dark, water that happens to find its way into them never has the opportunity to evaporate. Several of the instruments on LRO have found evidence of water ice, which you can see in the highlighted spots in this visualization.

South-Pole Aitken Basin


South Pole-Aitken Basin is the Moon’s largest, deepest and oldest observed impact structure. Its diameter is about 2,200 km or 1,367 miles across and takes up ¼ of the Moon! If there was a flat, straight road and you were driving 60 mph, it would take you about 22 hours to drive across. And the basin is so deep that nearly two Mount Everests stacked on each other would fit from the bottom of the basin to the rim. South-Pole Aitken Basin is a top choice for a landing site on the far side of the Moon.

Tycho Crater


Now let’s go to the near side. Tycho Crater is 100 million years young. Yes, that’s young in geologic time. The central peak of the impact crater likely formed from material that rebounded back up after being compressed in the impact, almost like a spring. Check out that boulder on top. It looks small in this image, but it could fill a baseball stadium.

Aristarchus Plateau


Also prominent on the nearside is the Aristarchus Plateau. It features a crater so bright that you could see it with your naked eye from Earth! The Aristarchus Plateau is particularly interesting to our scientists because it reveals much of the Moon’s volcanic history. The region is covered in rocks from volcanic eruptions and the large river-like structure is actually a channel made from a long-ago lava flow.

Apollo 17 Landing Site

As much as we study the Moon looking for sites to visit, we also look back at places we’ve already been. This is because the new data that LRO is gathering helps us reinterpret the geology of familiar places, giving scientists a better understanding of the sequence of events in early lunar history.

Here, we descend to the Apollo 17 landing site in the Taurus-Littrow valley, which is deeper than the Grand Canyon. The LRO camera is even able to capture a view of the bottom half of the Apollo 17 Lunar Lander, which still sits on the surface, as well as the rover vehicle. These images help preserve our accomplishment of human exploration on the Moon’s surface.

North Pole


Finally, we reach the North Pole. Like the South Pole, there are areas that are in permanent shadow and others that bask in nearly perpetual light. LRO scientists have taken detailed brightness and terrain measurements of the North Pole in order to model these areas of sunlight and shadow through time.  Sunlit peaks and crater rims here may be ideal locations for generating solar power for future expeditions to the Moon.

LRO was designed as a one-year mission. Now in its ninth year, the spacecraft and the data emphasize the power of long-term data collection. Thanks to its many orbits around the Moon, we have been able to expand on lunar science from the Apollo missions while paving the way for future lunar exploration. And as the mission continues to gather data, it will provide us with many more opportunities to take a tour of our Moon. 

And HERE’s the full “Tour of the Moon” video:

We hope you enjoyed the tour. If you’d like to explore the moon further, please visit and

Make sure to follow @NASAMoon on Twitter for the latest lunar updates and photos.

Make sure to follow us on Tumblr for your regular dose of space:

ExoMars poised to start science mission

ESA & ROSCOSMOS – ExoMars Mission patch.

9 April 2018

The ExoMars orbiter will soon begin its search for gases that may be linked to active geological or biological activity on the Red Planet.

Trace Gas Orbiter at Mars

The Trace Gas Orbiter has reached its final orbit after a year of ‘aerobraking’ that ended in February. This exciting operation saw the craft skimming through the very top of the upper atmosphere, using drag on its solar wings to transform its initial highly elliptical four-day orbit of about 200 x 98 000 km into the final, much lower and near-circular path at about 400 km.

It is now circling Mars every two hours and, after calibration and installation of new software, it will begin routine scientific observations.

“This is a major milestone for our ExoMars programme, and a fantastic achievement for Europe,” says Pia Mitschdoerfer, Trace Gas Orbiter mission manager.

“We have reached this orbit for the first time through aerobraking and with the heaviest orbiter ever sent to the Red Planet, ready to start searching for signs of life from orbit.”

Aerobraking completed

“We will start our science mission in just a couple of weeks and are extremely excited about what the first measurements will reveal,” says Håkan Svedhem, the orbiter’s project scientist.

“We have the sensitivity to detect rare gases in minute proportions, with the potential to discover if Mars is still active today – biologically or geologically speaking.”

The primary goal is to take a detailed inventory of trace gases – those that make up less than 1% of the total volume of the planet’s atmosphere. In particular, the orbiter will seek evidence of methane and other gases that could be signatures of active biological or geological activity.

How to create and destroy methane on Mars

On Earth, living organisms release much of the planet’s methane. It is also the main component of naturally occurring hydrocarbon gas reservoirs, and a contribution is also provided by volcanic and hydrothermal activity.

Methane on Mars is expected to have a rather short lifetime – around 400 years – because it is broken down by ultraviolet light from the Sun. It also reacts with other species in the atmosphere, and is subject to mixing and dispersal by winds. That means, if it is detected today, it was likely created or released from an ancient reservoir relatively recently.

Previous possible detections of methane by ESA’s Mars Express and more recently by NASA’s Curiosity rover have been hinted at, but are still the subject of much debate.

The Trace Gas Orbiter can detect and analyse methane and other trace gases even in extremely low concentrations, with an improved accuracy of three orders of magnitude over previous measurements. It will also be able to help distinguish between the different possible origins.

How ExoMars detects buried ice

The four instruments will make complementary measurements of the atmosphere, surface and subsurface. Its camera will help to characterise features on the surface that may be related to trace-gases sources.

Its instruments will also look for water-ice hidden just below the surface, which along with potential trace gas sources could guide the choice for future mission landing sites.

It will also soon start providing communication relay for NASA’s Opportunity and Curiosity rovers, ahead of the arrival of NASA’s InSight lander later this year, and for the ExoMars rover and surface science platform in March 2021.

Preliminary relay tests with NASA’s rovers were conducted in November 2016, shortly after the orbiter’s arrival at Mars. Eventually, it will provide multiple data relay connections each week.

The ExoMars programme is a joint endeavour between ESA and Roscosmos.

Related links:


Robotic exploration of Mars:


ExoMars at IKI:

Thales Alenia Space:

NASA In 2016 ExoMars orbiter (Electra radio):

Where on Mars?:

Images, Video, Text, Credits: ESA/Markus Bauer/Håkan Svedhem/Pia Mitschdoerfer/ATG medialab.

Greetings, Orbiter.chArchive link