Crew Researching Microbes and Plants For Space and Earth Benefits

ISS – Expedition 56 Mission patch.

June 22, 2018

The Expedition 56 crew members researched microbes and plants today and conducted more eye exams to benefit future space residents as well as people on Earth. The Cygnus space freighter continues to be packed for its release in July as robotics controllers get ready to inspect the vehicle.

Image above: Flying over Brazil, seen by EarthCam on ISS, speed: 27’616 Km/h, altitude: 403,22 Km, image captured by Roland Berga (on Earth in Switzerland) from International Space Station (ISS) using ISS-HD Live application with EarthCam’s from ISS on June 22, 2018 at 21:21 UTC. Image Credits: Orbiter.ch Aerospace/Roland Berga.

NASA astronaut Serena Auñón-Chancellor stowed genetically modified microbes in a science freezer that will be analyzed for their ability to compete with petrochemical production processes on Earth. Flight Engineer Ricky Arnold, also from NASA, thinned plants for the Plant Habitat-1 experiment that is comparing plants grown in microgravity to those grown on Earth.

Image above: Astronaut Alexander Gerst is seated in the Columbus laboratory module participating in the Grip study. Grip is researching how the nervous system adapts to microgravity. Observations may improve the design of safer space habitats and help patients on Earth with neurological diseases. Image Credit: NASA.

Arnold and Auñón-Chancellor later joined Commander Drew Feustel for more eye checks. The trio used optical coherence tomography to capture 2D and 3D imagery of the eye to help doctors understand how living in space affects eyesight.

European Space Agency astronaut Alexander Gerst was packing Cygnus with trash and old gear today ahead of its July 15 release.

Related links:

Plant Habitat-1: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=2032

Grip study: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1188

Expedition 56: https://www.nasa.gov/mission_pages/station/expeditions/expedition56/index.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA/Mark Garcia/Orbiter.ch Aerospace/Roland Berga.

Best regards, Orbiter.chArchive link

Charon at 40: Four Decades of Discovery on Pluto’s Largest Moon

NASA – New Horizons Mission logo.

June 22, 2018

Charon at 40: The Discovery of Pluto’s Largest Moon

Video above: The largest of Pluto’s five moons, Charon, was discovered on June 22, 1978, by James Christy and Robert Harrington at the U.S. Naval Observatory in Flagstaff, Arizona – only about six miles from where Pluto itself was discovered at Lowell Observatory. They weren’t even looking for satellites of Pluto – Christy, examining a series of grainy telescope images, trying to refine Pluto’s orbit around the Sun. Christy and others tell the story of this amazing scientific find, which fueled Pluto’s transformation from a telescopic dot into an actual planetary system – and a source of many discoveries to come. Video Credit: NASA.

The largest of Pluto’s five moons, Charon, was discovered 40 years ago today by James Christy and Robert Harrington at the U.S. Naval Observatory in Flagstaff, Arizona – only about six miles from where Pluto itself was discovered at Lowell Observatory. They weren’t even looking for satellites of Pluto – Christy was trying to refine Pluto’s orbit around the Sun.

Before NASA’s New Horizons spacecraft flew through the Pluto system in July 2015, many New Horizons scientists expected Charon to be a monotonous, crater-battered world. Instead, they found a landscape covered with giant mountains, vast canyons, a strange polar cap, surface-color variations and landslides.

“Even if Pluto wasn’t there, Charon would have been a great flyby target by itself,” said Will Grundy, a New Horizons science team co-investigator from Lowell Observatory in Flagstaff, Arizona. “It’s a far more exciting world than we imagined.”

It would have taken serious imagination to see much of anything in the grainy telescope plates of Pluto that U.S. Naval Observatory astronomer James Christy was checking 40 years ago to refine Pluto’s orbit. But on June 22, 1978, Christy did notice something – a small bump on one side of Pluto.

Image above: What a difference 40 years makes. An enhanced color image of Charon from data gathered by the New Horizons spacecraft in 2015 shows a range of diverse surface features, significantly transforming our view of a moon discovered in 1978 as a “bump” on Pluto (inset) in a set of grainy telescope images. Image Credits: U.S. Naval Observatory; NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

As he looked at other images he saw the bump again and again, only this time moving from one side of Pluto to another. Further examination showed the bump seemed to move around Pluto, cycling back and forth over Pluto’s own rotation period – 6.39 days. He figured either Pluto possessed a mountain thousands of miles high, or it had a satellite in a synchronous orbit. In the 48 years that had passed since Clyde Tombaugh discovered Pluto at Lowell Observatory in 1930, no evidence of any moon of Pluto had ever been spotted.

The Naval Observatory detailed the next steps to confirm the possible moon in a 1998 story about the 20th anniversary of the discovery: Christy scoured the observatory’s image archives and found more cases where Pluto appeared strangely elongated. He measured the angle (from north) where the elongations appeared, while his colleague Robert Harrington calculated what the answer “should be” if the elongation was caused by an orbiting satellite.

Their calculations matched. But to be sure, they waited for the Naval Observatory’s 61-inch telescope to make one more confirmation. And on July 2, 1978, new images showed the elongation due to a satellite right where it was supposed to be. They announced their discovery to the world five days later.

Image above: Forty years after his important discovery, Jim Christy holds two of the telescope images he used to spot Pluto’s large moon Charon in June 1978. A close-up photo of Charon, taken by the New Horizons spacecraft during its July 2015 flyby, is displayed on his computer screen. Image Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Art Howard/GHSPi.

An Important Discovery

The discovery of Charon fueled Pluto’s evolution from a telescopic dot into an actual planetary system – and a source of many discoveries yet to come.

About the size of Texas, Charon is the largest moon in the solar system relative to its parent planet. Together, Pluto and Charon were the first known double planet – or binary – two bodies that orbit a common center of gravity. Modeling also shows that Pluto-Charon formed by giant impact, very much like the Earth-Moon system.

Naming a Moon

Tradition allows a moon’s discoverer to suggest a name for the new satellite to the International Astronomical Union (IAU). Christy wanted to name it after his wife, Charlene, known as “Char” to friends and family. “I’m always thinking about physics, electrons and protons,” Christy recalled. “I added an ‘-on’ to it and said I could name it Charon.”

While wondering whether the name Charon would be approved, Christy checked the dictionary and found “Charon” was actually a real term — the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto’s underworld. With that, he knew the name would be a perfect fit for a companion of Pluto and made that linkage known to the IAU, which approved the name Charon.

“A lot of husbands promise their wives the moon,” Charlene Christy said, “but Jim actually delivered.”

Image above: Jim Christy points to the photographic plate on which he discovered Pluto’s largest moon, Charon, in 1978. Image Credits: U.S. Naval Observatory.

NASA Photo Feature:

Meet Pluto’s Moon Charon
https://solarsystem.nasa.gov/news/466/10-things-calling-all-pluto-lovers/

Charon’s size and proximity to Pluto helped the push to send a mission to Pluto and see, close up, something for the first time. “The importance of the discovery of Charon really cannot be underestimated,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute in Boulder, Colorado. “We on the New Horizons team owe a big debt of gratitude to Jim Christy for his landmark discovery.”

In passing just about 18,000 miles (29,000 kilometers) from Charon on July 14, 2015, New Horizons completely transformed our view of the moon. High-resolution images of Charon’s Pluto-facing hemisphere revealed a belt of fractures and canyons that stretches more than 1,000 miles (1,600 kilometers) across the entire face of Charon and, likely, onto the moon’s far side. Four times as long as the Grand Canyon, and twice as deep in places, these faults and canyons indicate a titanic geological upheaval in Charon’s past.

What’s in the Names?

Learn about Charon’s Surface Features
http://pluto.jhuapl.edu/Multimedia/Science-Photos/image.php?page=1&gallery_id=2&image_id=536

An especially cool feature is Charon’s reddish polar coloring. Methane gas escapes from Pluto’s atmosphere and becomes “trapped” by the moon’s gravity and freezes to the cold, icy surface at Charon’s pole. Chemical processing by ultraviolet light from the Sun then transforms the methane into heavier hydrocarbons and eventually into reddish organic materials called tholins.

“Who would have thought that Pluto is a graffiti artist, spray-painting its companion with a reddish stain that covers an area the size of New Mexico?” asked Grundy, lead author of a 2016 paper on the phenomenon in the journal Nature.

For Christy – who, with Charlene, was recognized by a packed auditorium at the Johns Hopkins Applied Physics Lab in Maryland when the first close-up images of Charon were revealed – the transformation of Charon from a grainy blob into a real world over the past 40 years has been nothing short of amazing.

“When you go from this little blur in which you don’t actually see anything, to the enormous detail New Horizons sent back,” Christy said, “it’s incredible.”

Related links:

Pluto: http://www.nasa.gov/mission_pages/newhorizons/main/index.html

Dwarf Planets: https://www.nasa.gov/subject/3143/dwarf-planets

New Horizons: http://www.nasa.gov/mission_pages/newhorizons/main/index.html

Video (mentioned), Images (mentioned),Text, Credits: NASA/Bill Keeter.

Greetings, Orbiter.chArchive link

Chaotic Clouds of Jupiter

NASA – JUNO Mission logo.

June 22, 2018

This image captures swirling cloud belts and tumultuous vortices within Jupiter’s northern hemisphere.

NASA’s Juno spacecraft took this color-enhanced image at 10:23 p.m. PDT on May 23, 2018 (1:23 a.m. EDT on May 24), as the spacecraft performed its 13th close flyby of Jupiter. At the time, Juno was about 9,600 miles (15,500 kilometers) from the planet’s cloud tops, above a northern latitude of 56 degrees.

The region seen here is somewhat chaotic and turbulent, given the various swirling cloud formations. In general, the darker cloud material is deeper in Jupiter’s atmosphere, while bright cloud material is high. The bright clouds are most likely ammonia or ammonia and water, mixed with a sprinkling of unknown chemical ingredients.

A bright oval at bottom center stands out in the scene. This feature appears uniformly white in ground-based telescope observations. However, with JunoCam we can observe the fine-scale structure within this weather system, including additional structures within it. There is not significant motion apparent in the interior of this feature; like the Great Red Spot, its winds probably slows down greatly toward the center.

Juno orbiting Jupiter

Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft’s JunoCam imager.

JunoCam’s raw images are available for the public to peruse and process into image products at http://www.missionjuno.swri.edu/junocam

More information about Juno is at:

https://www.nasa.gov/juno and http://missionjuno.swri.edu

Image, Animation, Credits: NASA/Tony Greicius/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt /Seán Doran.

Greetings, Orbiter.chArchive link